
MA 3046 - Matrix Analysis
The Notion of Generalized Coordinates

Initially a vector is a physical, geometrical object with magnitude and direction:

Figure 1

until we lay down a coordinate system, e.g:

Figure 2

in which case, the vector can now be represented by its coordinates with respect to that
system, which, in this case are

x = [2, 1]

(Note that what these coordinates mean, operationally, is that we can find the tip of the
vector by first moving two units in the x1 direction, then followed by a move of one unit
in the x2 direction.)

However, what says that the coordinate system shown in Figure 2 is the only choice.
Why, for example, could not another observer, viewing the vector from a different perspec-
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Figure 3

tive, use the coordinate system shown in Figure 3? After all, it’s still the same physical
vector as in Figure 2.

But to reach the tip of the vector in this new system, we must now first move
√

5
units in the x̂1 direction, then followed by a move of zero units in the x̂2 direction. In
other words, in this new system, the coordinates of the vector are

x̂ = [
√

5, 0]

In other words, what this simple example shows is it is impossible to separate the
coordinates of a vector from the coordinate system in which that vector is constructed!
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MA 3046 - Matrix Analysis
Coordinates in Terms of Nonstandard Bases

By definition, a basis is any linearly independent spanning set.

An ordered basis is a basis, each of whose elements carries an explicit or implicit
numerical “tag,” so we can immediately say which is the first, the fifth, etc., i.e.

B =
{

b(1) , b(2) , · · · , b(n)
}

Ordered bases are nothing new. For example, <3 implicitly uses the ordered basis,

e(1) =




1
0
0


 , e(2) =




0
1
0


 , e(3) =




0
0
1




(the so-called standard basis for <3), and so, we know immediately from

x =




3
−1

4


 that x = 3 , y = −1 , and z = 4

(Imagine the confusion, for example, in air traffic control, if, in some countries, the second
component, not the third, represented altitude!)

But if B is any ordered basis, we know that we can uniquely represent any given
vector x as

x = α1b(1) + α2b(2) + · · · + αnb(n) (1)

We call the αi the coordinates of x relative to the ordered basis B, and symbolize them
by [x]B. The coordinates in terms of a general ordered basis are interpreted in <m very
much as we interpret the coordinates in terms of the standard basis, i.e. if

[x]B =




α1

α2
...

αn




then we simply:

(i) First move α1 ‖b(1) ‖ in the direction of b(1), then

(ii) Move α2 ‖b(2) ‖ in the direction of b(2), then . . .
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Moreover, if the b(i) are vectors from <m, then (1) becomes, in block matrix form:

[

b(1)
... b(2)

... · · ·
... b(n)

]

︸ ︷︷ ︸
B




α1

α2
...

αn


 = x

Based on this, we have, in <m, the fundamental relationship

B [x]B = x (2)

where B is the matrix whose columns are simply the elements of the ordered basis B, in
order. In light of this, we then see that whenever we consider the questions of existence
and uniqueness of solutions to the system of linear equations, e.g.

Ax = b

all we are really tying to do is find whether or not the columns of A are a basis for some
subspace of <m, and, if so, whether it is possible to find the coordinates for b in terms of
them.

Lastly, in discussing the coordinates in terms of any non-standard basis, it is important
to keep in mind that all we are doing is representating the same physical point in terms
of a different frame of reference. Therefore, if we happen to have two different ordered
bases, say B and

C =
{

c(1) , c(2) , · · · , c(n)
}

for the same subspace, then

B [x]B = C [x]C = x

where C is the matrix whose columns are the individual vectors in the basis C, in order.
Based on this equation, it is trivial, at least in theory, to move between different coordinates
for the same (sub)space, since

[x]C = C−1 B [x]B (3)

In other texts, the matrix C−1 B is commonly called the transition matrix from B to C,
and may be symbolized by P

C←B
.
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